
02461 - Intelligente systemer

Author

Nicholas Erup Larsen (s224175)
Noah Ryu Nguyen (s224207)

Caroline Schubert Mortensen (s224173)

January 3, 2024



02461 - Project, Chess AI

1 Abstract
by Nicholas Erup Larsen

Traditionally, chess AIs have used rule-based systems and search algorithms in order to become
the reigning chess champions for 20 years, but these systems have hard-coded limitations to avoid
searching through the absurdly high number of possible positions that exist for every move. 2017
marked a turning point for AI when AlphaZero beat those same machines using new self-play rein-
forcement learning techniques.

Surprisingly, there has been few attempts to recreate this success with other forms of neural networks.
In this paper, we train a five-layer convolutional neural network (CNN) on 6059 different games of
chess from professional players and Stockfish, totaling to 1 million positions, and use supervised
learning to ideally beat an average person with little to no prior experience. In this context, our
average person is being imitated by a 500 elo Stockfish.

Our results show a discrepancy between the results of our training loss data and the actual gameplay
performance of our chess AI. This could suggest that convolutional neural networks might be an
inadqeuate fit for this type of problem.

i



02461 - Project, Chess AI Contents

Contents
1 Abstract i

2 Introduction 1

3 Methods 2

4 Results 5

5 Discussion 6

6 References 8

7 Appendiks 9

ii



02461 - Project, Chess AI

2 Introduction
by Caroline Schubert Mortensen

This project will focus on the game called chess - a strategic and challenging two-man game, where
logic and coherence are important in order to win over the opponent. Each player possesses 16 game
pieces, each of which has different properties that affect how they can move on the game board. The
goal of the game is to checkmate the opponent, which is done by attacking the opponent’s king in a
way that the attack cannot be parried.

In 1996, the computer Deep Blue beat the reigning world champion, Kasparov, in chess. An excellent
programming presentation, which was based on the background of the fights of human grandmasters.
Later AlphaZero entered the spotlight, which, unlike Deep Blue, was only fed the rules of chess, and
which has subsequently experimented itself by playing against itself.

Over the years, more and more open source chess computers have appeared. One of the strongest
chess program so far is called Stockfish, which has won the Top Chess Engine Championship over 10
times. Stockfish implements an advanced alpha-beta search, uses bitboards and compared to other
engines, is characterized by its great search depth. Can we program a new chess engine? A chess
engine based on games from Stockfish as well as professional chess players. A engine that can beat
an average person with no or little experience?

To attempt this, we propose the development of a convolutional neural network-based chess engine,
utilizing a combination of extensive game data and evaluations from the widely-used open-source
engine, Stockfish. The implementation of this approach presents various challenges and complexities
but is a necessary step toward achieving the ultimate goal of creating a highly effective chess engine.
We hypothesize that the larger the amount of games our network trains on, where we use supervised
learning, the better performance it will have in comparison to its previous generations.

Side 1 af 22



02461 - Project, Chess AI

3 Methods
by Noah Ryu Nguyen

Below is a template of our topology for the entire project.

Figure 1: Topology / Main build for project

Program A

In our approach to creating a neural network for chess, we evaluated two options for obtaining train-
ing data. Our first option was to use the python-chess library, which offered a variety of features
such as chess rules, moves generation, evaluations, and validations. Additionally, it allowed for direct
communication with the Stockfish engine. However, we found that using Stockfish to self-play and
record games was not a practical option as it required significant resources and resulted in limited
game diversity. As a result, we had to find another approach to collecting our data.

Our second approach to obtaining data for training the neural network was to download a large
number of professional chess games in PGN format from databases. While this method was faster
than our previous approach, it presented its own set of challenges. Professional chess games often
end before a stalemate or checkmate occurs, with players resigning or agreeing to a draw. To address
this, we decided to self-play additional games using the python-chess library when a game ended
prematurely. We then created a Forsyth-Edwards Notation (FEN) for each position in all the games
and combined them into a single file. This resulted in a total of 6059 games and 957210 unique board
positions, each represented as a FEN-string. With this data, we were able to convert the positions
into binary data and corresponding evaluations for use in training the neural network.

Side 2 af 22



02461 - Project, Chess AI

Program B

To effectively train a neural network on chess data, it is necessary to convert the visual representation
of a chess position into numerical data that a computer can understand. One way to achieve this is
through the use of bitboards. From each FEN position, we extracted 24 binary bitboard matrices
that contain information about the position. These bitboards provide a compact and efficient way for
a computer to understand the layout of the pieces on the board and their movements. The following
image shows an example of a chessboard represented using bitboards.

1 e4

8 rmblkans
7 opopopop
6 0Z0Z0Z0Z
5 Z0Z0Z0Z0
4 0Z0ZPZ0Z
3 Z0Z0Z0Z0
2 POPO0OPO
1 SNAQJBMR

a b c d e f g h

e4 is the most common opening move.

[[0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0]
[0 0 0 0 1 0 0 0]
[0 0 0 0 0 0 0 0]
[1 1 1 1 0 1 1 1]
[0 0 0 0 0 0 0 0]]

[[0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0]
[0 1 0 0 0 0 1 0]]

[[0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0]
[0 0 1 0 0 1 0 0]]

1. white pawns 2. white knights 3. white bishops

Additionally, we had 21 other bitboards - 1 for the white queen, 1 for the white king, 6 for black
pieces, 1 for the turn, 4 for castling rights, 1 for en passant, 1 for fifty move repetition rule, 1 for
threefold repetition rule, 1 for mobility and 1 for the mobility of player not on the turn. A total
of 24 bitboards were generated from a single board position. (APPENDIX TO CODE) We used
this information, along with the evaluation from Stockfish (a value between 0 and 1 indicating the
strength of the position for black or white) as input for a neural network. The goal of the network
was to mimic the evaluation function of Stockfish. All of the data were converted to tensors to
manipulate and tune the values using PyTorch.

Side 3 af 22



02461 - Project, Chess AI

Program C

We use a convolutional neural network and find it interesting because it allows the engine to learn
from experience and improve over time, rather than relying solely on rule-based systems and hard-
coded chess knowledge like Stockfish. A CNN can be trained to recognize patterns that are not easily
captured by traditional rule-based systems which can ideally lead to creativity and novel ideas. Once
trained, the CNN can be used to evaluate positions and predict moves using a minimax algorithm,
without relying on any hand-tuned rules.

Our model defines a convolutional neural network (CNN) for playing chess. The model takes the input
of 24 bitboards and a corresponding stockfish evaluation and outputs a single value representing the
predicted strength of the current chess position for the side to move. The CNN is trained to recognize
patterns in the chess positions that are not easily captured by traditional rule-based systems. The
model is initialized with three parameters: conv-size, conv-depth, and dropout-rate. The model
architecture comprises convolutional layers, batch normalization, ReLU activation functions, dropout
layers, dense layers, and a value head that predict the optimal chess position. Lastly, the model is
moved to the GPU for faster processing.

For the training, the data is loaded from a .pt file and split into a training and validation set. The
Adam optimizer is defined with a specified learning rate and the mean squared error loss function is
defined. A counter is initialized to track the number of consecutive increases in validation loss, and
a threshold is set for the number of consecutive increases before stopping the training. The training
process consists of a number of full iterations (epochs) and in each iteration, the model is passed
the training data and the gradients are calculated, then the optimizer updates the parameters of the
model using backpropagation. After each epoch, the validation loss is calculated and recorded. The
training ends when the validation loss has increased for a certain number of consecutive epochs or
when the maximum number of iterations is reached.

Program D

The minimax algorithm is a decision-making algorithm that is commonly used in two-player games
such as chess. It evaluates all possible moves of both players and selects the move that leads to the
best outcome for the current player, assuming that the opposing player will also select the move that
leads to the best outcome for them.

Alpha-beta pruning is a technique used to improve the performance of the minimax algorithm. It
eliminates branches of the search tree that are unlikely to be selected, reducing the number of nodes
that need to be evaluated and speeding up the search process. The algorithm uses the alpha and
beta values to keep track of the best move that the current player can make and the best move that
the opposing player can make, respectively. If beta <= alpha then the function breaks the loop since
we don’t need to keep checking the moves since the max player already found a better move.

Our function looks at whether the current player is trying to win (white) or prevent the opponent
from winning (black). If the current player is white, it goes through all possible moves and makes
each one on the board. It then calls itself with the new board, the same depth, and new values for
alpha and beta. After trying all the moves, it chooses the one that leads to the best outcome for
white. If the current player is black, it does the same thing but chooses the move that leads to the
worst outcome for the white. All of our programs can be found in the appendix.

Side 4 af 22



02461 - Project, Chess AI

4 Results
by Nicholas Erup Larsen

Below is a table of how our model has performed versus three different opponents. Given the long
computing time for moves beyond a depth of 3 and the static nature of its playstyle, we have limited
the amount of games for each opponent to 10 per side. This also means a confidence interval seems
meaningless to include. The results are to be interpreted as win/draw/loss for white.

Depth White Black Win Draw Loss CNN win %

1 CNN Random 4 6 0 40 %
Random CNN 7 3 0 0 %

2 CNN Random 5 5 0 50 %
Random CNN 4 5 1 10 %

3 CNN Random 8 2 0 80 %
Random CNN 2 8 0 20 %

1-3 CNN CNN 0 10 0 0 %
CNN CNN 0 10 0 0 %

1-3 CNN Stockfish 0 0 10 0 %
Stockfish CNN 10 0 0 0 %

Figure 2: CNN performance on the chess board

In the results, Stockfish’s parameters are set to mimic 100 elo. The reason for the static data in
CNN vs itself and CNN vs Stockfish is, despite changing the depths of the minimax algorithm which
does alter the model’s playstyle slightly, it still plays the exact same moves invariably. Therefore,
this outcome can be extrapolated beyond the range of 20 games except for randomly selected moves
as the only opponent which forces our model to evaluate new positions.

Below is the training and validation loss function for the model used in the results above. The y-axis
graphs the mean squared error between the prediction tensor vs evaluation tensor (loss function),
and the x-axis graphs the number of iterations through the entire dataset.

Figure 3: Graph of the training and validation loss data

Side 5 af 22



02461 - Project, Chess AI

5 Discussion
by Nicholas Erup Larsen, Noah Ryu Nguyen and Caroline Schubert Mortensen

As evident in the last section, the results did not meet our expectations. Our initial hypothesis
was that the trained CNN would be able to beat a 500 elo rated player 10 out of 10 times, however,
it only managed to achieve a positive score versus randomly generated moves. To our puzzlement,
in spite of poor performance on the chess board, the data from our training and test loss showed
desired developments and improved itself for every epoch. So although the model is learning, which
is also reflected in the non-randomness of its moves, why is it not playing better?

At first, the model would play weird openings like a4 which is notoriously one of the worst openings
in the game. This happened due to a bug in the code of our minimax algorithm which expected
values between −∞ to ∞, however, our output evaluations from the CNN had values between 0 and
1. After fixing this, the model started playing more ordinary openings like e4.

Interestingly, with a validation mean squared error lower than 0.0025, the difference in centipawns
(Stockfish’s evaluation method) becomes less than 0.05.[7] With such a minimal difference in cen-
tipawns, in theory, our model should output the same evaluations as Stockfish with at least 1 decimal
precision. One reason why this performance is not reflected on the chess board could be that our
minimax algorithm, despite previous fixes, is not properly searching through the evaluations or has
some other error. Another reason could be lack of generalization but this hypothesis does conflict
with the graph from our validation set which does not seem to be overfitting. It is hard to pinpoint
what exactly is working suboptimally but perhaps the observations we made from watching it play
could provide further insight.

One frequent observation from games of multiple differently trained versions of our model, playing
versus 100 elo imitated Stockfish, showed that the CNN would sacrifice its queen within the first
couple of moves for nothing in return. A queen is widely regarded as the most valuable piece on
the board (besides the king) so usually a queen sacrifice is used as a trap to lure the opponent into
a checkmate. However, in this case it seemed like the model neither had any concept of the queen
piece’s value or devised a strategy to use it in a clever way.

We contemplated combatting this issue by manually assigning all the pieces to an appropriate value
(usually pawn: 1, knight/bishop: 3, rook: 5, queen: 9) and use that as a bias for the network.
But we came to the same conclusion as another paper has worded nicely; "We noticed that adding
the information about the value of the pieces does not provide any advantage to the ANNs. On the
contrary both for the MLP and the CNN this penalizes their overall performances." [7]

Another pattern we found is that the model struggles to checkmate in end-game positions. Even
with clear winning positions and material advantage, it often ends up playing the same two moves
endlessly until it draws because of the fifty-move rule, sometimes even while being able to checkmate.
This, combined with the fact that unless challenged by new and unknown positions it will play the
same moves every game, suggests that there’s some rigid nature to CNNs that prevents them from
learning the adaptive, generalized behaviour that makes players, and other AIs, excel at chess. A

Side 6 af 22



02461 - Project, Chess AI

2015 study came to a similar conclusion, describing the game of chess as too asymmetrically complex
with all its intricacies and rules for a CNN to learn alone.[10]

To conclude, it is difficult to say what exactly went wrong and why our model did not perform as
expected. It is possible our datasets contained errors, was too small or there were minor bugs in
our neural network. CNNs are extremely sensitive to the hyperparameters such as the convolutional
depth, the number of neurons, the number of layers and overall build size. It is a continuous and
exasperating trade-off between generalization and complexity which always lead to either overfitting
or underfitting. A CNN could be maximizing its performance during training, yet it would perform
poorly on unseen data since it would not be able to adequately adapt and comprehend general
structures. In other words, our network might be an expert at playing perfectly in games identitical or
extremely similar to the data it was trained on but fails to evaluate moves properly in unrecognizable
positions.

Side 7 af 22



02461 - Project, Chess AI

6 References

[1] Acquisition of Chess Knowledge in AlphaZero - arxiv.org

[2] AlphaZero: Shedding new light on chess, shogi, and Go - deepmind.com

[3] Bitboards - chessprogramming.org

[4] Chess Engine Design - hkopp.github.io

[5] Creating a Chess AI with TensorFlow - youtube.com

[6] How do modern chess engines work? - youtube.com

[7] Learning to Play Chess with Minimal Lookahead and Deep Value Neural Networks - research-
gate.net, p.42 ll.20-21, p.39 ll.14-16

[8] Main Page - chessprogramming.org

[9] Neural network topology - lczero.org

[10] Predicting Moves in Chess using Convolutional Neural Networks

[11] Search: Games, Minimax, and Alpha-Beta - youtube.com

[12] Understanding AlphaZero Neural Network’s SuperHuman Chess Ability - marktechpost.com

Side 8 af 22

https://arxiv.org/pdf/2111.09259.pdf
https://www.deepmind.com/blog/alphazero-shedding-new-light-on-chess-shogi-and-go
https://www.chessprogramming.org/Bitboards
http://hkopp.github.io/2020/01/chess-engine-design
https://www.youtube.com/watch?v=ffzvhe97J4Q
https://www.youtube.com/watch?v=pUyURF1Tqvg
https://www.researchgate.net/publication/321028267_Learning_to_Play_Chess_with_Minimal_Lookahead_and_Deep_Value_Neural_Networks#pff
https://www.chessprogramming.org/Main_Page
https://lczero.org/dev/backend/nn/
http://cs231n.stanford.edu/reports/2015/pdfs/ConvChess.pdf?fbclid=IwAR3c22N4erApm6GYkXRekhpuT3jFNFPc-UzzEaV7sMnTAG9PuxB2-CluGXE
https://www.youtube.com/watch?v=STjW3eH0Cik
https://www.marktechpost.com/2021/12/16/understanding-alphazero-neural-networks-superhuman-chess-ability/


02461 - Project, Chess AI

7 Appendiks
Program A

1 import chess
2 import chess.engine
3 import chess.pgn
4 import numpy as np
5 import sys
6

7

8 try:
9 pgn_path = sys.argv[1]

10 fen_path = sys.argv[2]
11 engine_path = sys.argv[3]
12 except IndexError:
13 raise SystemExit(f"Usage: {sys.argv[0]} <pgn-file> <fen-output-file> <uci-engine-executable-path>")
14

15 # Engine
16 engine = chess.engine.SimpleEngine.popen_uci(engine_path)
17 # Open the PGN file
18 pgn = open(pgn_path)
19

20 # Create a list to store the positions
21 positions = []
22 pgn_positions = 0
23 stockfish_positions = 0
24 game_count = 0
25

26

27 # Iterate through each game in the PGN file
28 while True:
29 game = chess.pgn.read_game(pgn)
30 if game is None:
31 break
32

33 # Get the moves of the game
34 GameMoves = game.mainline_moves()
35

36 # Set up the board for the game
37 board = game.board()
38

39 # Iterate through each position in the game
40 for move in GameMoves:
41 board.push(move)
42 fen = board.fen()
43 positions.append(fen)
44 pgn_positions += 1

Side 9 af 22



02461 - Project, Chess AI

45

46 # Check if the game was resigned or drawn
47 # if not board.is_checkmate() and not board.is_stalemate():
48 # Use Stockfish to play the game from the last position
49 while not board.is_game_over():
50 result = engine.play(board, chess.engine.Limit(time=0.001))
51 board.push(result.move)
52 fen = board.fen()
53 positions.append(fen)
54 stockfish_positions += 1
55

56 game_count += 1
57

58 print(f"\rGames: {game_count:,}, PGN positions: {pgn_positions:,}, Stockfish positions: {stockfish_positions:,}, Total positions: {len(positions):,}", end="")
59

60 print()
61 print(f"PGN positions: {pgn_positions}")
62 print(f"Stockfish positions: {stockfish_positions}")
63 print(f"Total positions: {len(positions)}")
64

65

66 # Close the engine and the PGN file
67 engine.quit()
68 pgn.close()
69

70 # Save the file
71 np.savez_compressed(fen_path,positions=positions)

Program B

1 import numpy as np
2 import chess
3 import chess.engine
4 import torch
5 import sys
6

7

8 # SETUP & INATIALIZE
9 squares_index = {

10 'a': 0,
11 'b': 1,
12 'c': 2,
13 'd': 3,
14 'e': 4,
15 'f': 5,
16 'g': 6,
17 'h': 7

Side 10 af 22



02461 - Project, Chess AI

18 }
19

20

21 # example: h3 -> 17
22 def square_to_index(square):
23 letter = chess.square_name(square)
24 return 8 - int(letter[1]), squares_index[letter[0]]
25

26

27 def split_dims(board):
28 # this is the 4d matrix
29 board4d = np.zeros((24, 8, 8), dtype=np.int8)
30

31 # here we add the pieces's view on the matrix
32 for piece in chess.PIECE_TYPES:
33 for square in board.pieces(piece, chess.WHITE):
34 idx = np.unravel_index(square, (8, 8))
35 board4d[piece - 1][7 - idx[0]][idx[1]] = 1
36 for square in board.pieces(piece, chess.BLACK):
37 idx = np.unravel_index(square, (8, 8))
38 board4d[piece + 5][7 - idx[0]][idx[1]] = 1
39

40 # add attacks and valid moves too
41 # so the network knows what is being attacked
42 aux = board.turn
43 board.turn = chess.WHITE
44 for move in board.legal_moves:
45 i, j = square_to_index(move.to_square)
46 board4d[12][i][j] = 1
47 board.turn = chess.BLACK
48 for move in board.legal_moves:
49 i, j = square_to_index(move.to_square)
50 board4d[13][i][j] = 1
51 board.turn = aux
52

53 # set the turn dimension
54 if board.turn == chess.WHITE:
55 board4d[14] = 1
56 else:
57 board4d[14] = 0
58

59 # add bitboard for en passant
60 if board.ep_square:
61 idx = np.unravel_index(board.ep_square, (8, 8))
62 board4d[15][idx[0]][idx[1]] = 1
63

64 # add bitboards for castling rights
65 if board.has_kingside_castling_rights(chess.WHITE):
66 board4d[16][7][7] = 1
67 if board.has_queenside_castling_rights(chess.WHITE):

Side 11 af 22



02461 - Project, Chess AI

68 board4d[17][7][0] = 1
69 if board.has_kingside_castling_rights(chess.BLACK):
70 board4d[18][0][7] = 1
71 if board.has_queenside_castling_rights(chess.BLACK):
72 board4d[19][0][0] = 1
73

74 # binary channel for repetition
75 repetitions = board.can_claim_fifty_moves()
76 if repetitions:
77 board4d[20][:][:] = 1
78

79 # binary channel for threefold repetition rule
80 repetitions = board.can_claim_draw()
81 if repetitions:
82 board4d[21][:][:] = 1
83

84 # add bitboard for mobility
85 for move in board.legal_moves:
86 i, j = square_to_index(move.from_square)
87 board4d[22][i][j] = 1
88

89 # add bitboard for mobility of player not on turn
90 aux = board.turn
91 board.turn = chess.WHITE if board.turn == chess.BLACK else chess.BLACK
92 for move in board.pseudo_legal_moves:
93 if board.is_legal(move):
94 i, j = square_to_index(move.from_square)
95 board4d[23][i][j] = 1
96 board.turn = aux
97

98 return board4d
99

100 try:
101 fen_path = sys.argv[1]
102 output_path = sys.argv[2]
103 engine_path = sys.argv[3]
104 except IndexError:
105 raise SystemExit(f"Usage: {sys.argv[0]} <fen-npz-file> <output-file> <uci-engine-executable-path>")
106

107

108 # Load the NPZ file
109 positions = np.load(fen_path)["positions"]
110

111 counter = 0
112

113 with chess.engine.SimpleEngine.popen_uci(engine_path) as sf:
114 # Create a new list to store the scores
115 evaluations = []
116 positionsBitboard = []
117

Side 12 af 22



02461 - Project, Chess AI

118 # Iterate through the positions
119 for fen in positions:
120 # Create a board from the FEN string
121 board = chess.Board(fen)
122

123 # Use the sf object to perform the analysis
124 result = sf.analyse(board, chess.engine.Limit(depth=1))
125 score = (result['score'].white().wdl(ply=1).expectation())
126

127 if(not board.is_game_over()):
128 # push the principle varation's move on the board
129 board.push(result["pv"][0])
130

131 # Add the score and positionsBitboard to the lists
132 evaluations.append(score)
133 positionsBitboard.append(split_dims(board))
134

135 counter += 1
136 if (counter % 1000 == 0):
137 print(f"Evaluations: {len(evaluations)}")
138

139 # Convert the numpy arrays to PyTorch tensors
140 evaluations = [val if val is not None else 0 for val in evaluations]
141

142

143 evaluations = np.array(evaluations)
144 positionsBitboard = np.array(positionsBitboard)
145

146 positionsBitboard_tensor = torch.tensor(positionsBitboard, dtype=torch.float32)
147 evaluations_tensor = torch.tensor(evaluations, dtype=torch.float32).reshape(-1, 1)
148

149 torch.save({'positionsBitboard': positionsBitboard_tensor, 'evaluations': evaluations_tensor}, output_path)

Program C

1 import chess
2 import chess.engine
3 import torch
4 from torch.utils.data import DataLoader
5 import torch.nn as nn
6 import torch.optim as optim
7 import numpy as np
8 import matplotlib.pyplot as plt
9 import torch.cuda as cuda

10 from sklearn.model_selection import train_test_split
11

12

Side 13 af 22



02461 - Project, Chess AI

13 # SETUP & INATIALIZE
14 squares_index = {
15 'a': 0,
16 'b': 1,
17 'c': 2,
18 'd': 3,
19 'e': 4,
20 'f': 5,
21 'g': 6,
22 'h': 7
23 }
24

25

26 # example: h3 -> 17
27 def square_to_index(square):
28 letter = chess.square_name(square)
29 return 8 - int(letter[1]), squares_index[letter[0]]
30

31

32 def split_dims(board):
33 # this is the 4d matrix
34 board4d = np.zeros((24, 8, 8), dtype=np.int8)
35

36 # here we add the pieces's view on the matrix
37 for piece in chess.PIECE_TYPES:
38 for square in board.pieces(piece, chess.WHITE):
39 idx = np.unravel_index(square, (8, 8))
40 board4d[piece - 1][7 - idx[0]][idx[1]] = 1
41 for square in board.pieces(piece, chess.BLACK):
42 idx = np.unravel_index(square, (8, 8))
43 board4d[piece + 5][7 - idx[0]][idx[1]] = 1
44

45 # add attacks and valid moves too
46 # so the network knows what is being attacked
47 aux = board.turn
48 board.turn = chess.WHITE
49 for move in board.legal_moves:
50 i, j = square_to_index(move.to_square)
51 board4d[12][i][j] = 1
52 board.turn = chess.BLACK
53 for move in board.legal_moves:
54 i, j = square_to_index(move.to_square)
55 board4d[13][i][j] = 1
56 board.turn = aux
57

58 # set the turn dimension
59 if board.turn == chess.WHITE:
60 board4d[14] = 1
61 else:
62 board4d[14] = 0

Side 14 af 22



02461 - Project, Chess AI

63

64 # add bitboard for en passant
65 if board.ep_square:
66 idx = np.unravel_index(board.ep_square, (8, 8))
67 board4d[15][idx[0]][idx[1]] = 1
68

69 # add bitboards for castling rights
70 if board.has_kingside_castling_rights(chess.WHITE):
71 board4d[16][7][7] = 1
72 if board.has_queenside_castling_rights(chess.WHITE):
73 board4d[17][7][0] = 1
74 if board.has_kingside_castling_rights(chess.BLACK):
75 board4d[18][0][7] = 1
76 if board.has_queenside_castling_rights(chess.BLACK):
77 board4d[19][0][0] = 1
78

79 # binary channel for repetition
80 repetitions = board.can_claim_fifty_moves()
81 if repetitions:
82 board4d[20][:][:] = 1
83

84 # binary channel for threefold repetition rule
85 repetitions = board.can_claim_draw()
86 if repetitions:
87 board4d[21][:][:] = 1
88

89 # add bitboard for mobility
90 for move in board.legal_moves:
91 i, j = square_to_index(move.from_square)
92 board4d[22][i][j] = 1
93

94 # add bitboard for mobility of player not on turn
95 aux = board.turn
96 board.turn = chess.WHITE if board.turn == chess.BLACK else chess.BLACK
97 for move in board.pseudo_legal_moves:
98 if board.is_legal(move):
99 i, j = square_to_index(move.from_square)

100 board4d[23][i][j] = 1
101 board.turn = aux
102

103 return board4d
104

105 class build_model(nn.Module):
106 def __init__(self, conv_size, conv_depth, dropout_rate):
107 super(build_model, self).__init__()
108 self.board4d = nn.Sequential(
109 nn.Conv2d(24, conv_size, kernel_size=3, padding=1),
110 nn.BatchNorm2d(conv_size),
111 nn.ReLU(),
112 nn.Dropout2d(p=dropout_rate)

Side 15 af 22



02461 - Project, Chess AI

113 )
114 for _ in range(conv_depth - 1):
115 self.board4d.add_module('conv{}'.format(_), nn.Conv2d(conv_size, conv_size, kernel_size=3, padding=1))
116 self.board4d.add_module('bn{}'.format(_), nn.BatchNorm2d(conv_size))
117 self.board4d.add_module('relu{}'.format(_), nn.ReLU())
118 self.board4d.add_module('dropout{}'.format(_), nn.Dropout2d(p=dropout_rate))
119

120 self.flatten = nn.Flatten()
121 self.dense1 = nn.Linear(conv_size * 8 * 8, 256)
122 self.dense2 = nn.Linear(256, 256)
123 self.dense3 = nn.Linear(256, 64)
124 self.value_head = nn.Linear(64, 1)
125

126 def forward(self, x):
127 x = self.board4d(x)
128 x = self.flatten(x)
129 x = self.dense1(x)
130 x = self.dense2(x)
131 x = self.dense3(x)
132 value = self.value_head(x)
133 return value
134

135 model = build_model(128, 5, 0.20)
136 model.cuda()
137

138 #Training!
139 # Assuming that "model" has already been defined using the build_model function
140 # Load the data from the .pt file
141 data = torch.load(r"FILEPATH.pt")
142 positionsBitboard = data["positionsBitboard"]
143 evaluations = data["evaluations"]
144

145 dataset = torch.utils.data.TensorDataset(positionsBitboard, evaluations)
146

147 dataloader = DataLoader(dataset, batch_size=128, shuffle=True)
148

149 # Split the data into a training set and a validation set
150 train_data, val_data = train_test_split(dataset, test_size=0.2, random_state=42)
151 train_dataloader = DataLoader(train_data, batch_size=128, shuffle=True)
152 val_dataloader = DataLoader(val_data, batch_size=128, shuffle=False)
153

154 # Define the Adam optimizer with the specified learning rate
155 optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
156

157 # Define the mean squared error loss function
158 loss_fn = nn.MSELoss()
159

160 # Initialize an empty list to store the losses
161 losses = []
162

Side 16 af 22



02461 - Project, Chess AI

163 # Initialize an empty list to store the validation losses
164 val_losses = []
165

166 # Initialize a counter for the number of consecutive increases in validation loss
167 consec_increase = 0
168

169 # Threshold for the number of consecutive increases in validation loss
170 threshold = 5
171

172 # How many full iterations
173 num_epochs = 50
174

175 val_losses = [float('inf')]
176

177 for epoch in range(num_epochs):
178 for positionsBitboard, evaluations in dataloader:
179 # Clear the gradients
180 optimizer.zero_grad()
181

182 # Pass the data through the model
183 value = model(positionsBitboard.cuda())
184

185 # Calculate the loss
186 value_loss = loss_fn(value, evaluations.cuda())
187

188

189 # Perform backpropagation to update the model's parameters
190 loss = value_loss
191 loss.backward()
192 optimizer.step()
193

194 # Append the current loss to the list of losses
195 losses.append(loss.item())
196

197 # After each epoch, calculate the validation loss
198 with torch.no_grad():
199 val_loss = 0
200 for val_positionsBitboard, val_evaluations in val_dataloader:
201 val_loss += loss_fn(model(val_positionsBitboard.cuda()), val_evaluations.cuda())
202 val_loss /= len(val_dataloader)
203 val_losses.append(val_loss.item())
204

205 # Print the current epoch and the current loss
206 print("Epoch: {}/{}, Loss: {:.4f}".format(epoch+1, num_epochs, loss.item()))
207

208 # Check if the validation loss has increased
209 if len(val_losses)>1:
210 if val_losses[-1] > val_losses[-2]:
211 consec_increase += 1
212 else:

Side 17 af 22



02461 - Project, Chess AI

213 consec_increase = 0
214

215 # If the validation loss has increased for a certain number of consecutive epochs, stop the training
216 if consec_increase >= threshold:
217 print("Validation loss has increased for {} consecutive epochs. Stopping training.".format(threshold))
218 break
219

220 # Print the predicted evaluation and the real evaluation
221 print(f'Prediction: {value[0]}')
222 print(f'Evaluation: {evaluations[0]}')
223

224 losses = losses[128:]
225

226 plt.xlim(0, len(losses))
227 # Plot the loss over time with 30% opacity
228 plt.plot(losses, alpha=0.4)
229

230 # Plot the rolling average of the losses over time
231 rolling_window = 1280
232 losses_rolling = [np.mean(losses[i:i+rolling_window]) for i in range(1, len(losses)-rolling_window)]
233 plt.plot(losses_rolling, label='Training Loss')
234 plt.xlabel("Iterations")
235 plt.ylabel("Loss")
236 plt.show()
237

238 # save the model
239 torch.save(model.state_dict(), "NAME.pt")

Program D

1 import chess
2 import chess.engine
3 import torch
4 from torch.utils.data import DataLoader
5 import torch.nn as nn
6 import torch.optim as optim
7 import numpy as np
8 import matplotlib.pyplot as plt
9

10 # SETUP & INATIALIZE
11 squares_index = {
12 'a': 0,
13 'b': 1,
14 'c': 2,
15 'd': 3,
16 'e': 4,
17 'f': 5,

Side 18 af 22



02461 - Project, Chess AI

18 'g': 6,
19 'h': 7
20 }
21

22

23 # example: h3 -> 17
24 def square_to_index(square):
25 letter = chess.square_name(square)
26 return 8 - int(letter[1]), squares_index[letter[0]]
27

28

29 def split_dims(board):
30 # this is the 4d matrix
31 board4d = np.zeros((24, 8, 8), dtype=np.int8)
32

33 # here we add the pieces's view on the matrix
34 for piece in chess.PIECE_TYPES:
35 for square in board.pieces(piece, chess.WHITE):
36 idx = np.unravel_index(square, (8, 8))
37 board4d[piece - 1][7 - idx[0]][idx[1]] = 1
38 for square in board.pieces(piece, chess.BLACK):
39 idx = np.unravel_index(square, (8, 8))
40 board4d[piece + 5][7 - idx[0]][idx[1]] = 1
41

42 # add attacks and valid moves too
43 # so the network knows what is being attacked
44 aux = board.turn
45 board.turn = chess.WHITE
46 for move in board.legal_moves:
47 i, j = square_to_index(move.to_square)
48 board4d[12][i][j] = 1
49 board.turn = chess.BLACK
50 for move in board.legal_moves:
51 i, j = square_to_index(move.to_square)
52 board4d[13][i][j] = 1
53 board.turn = aux
54

55 # set the turn dimension
56 if board.turn == chess.WHITE:
57 board4d[14] = 1
58 else:
59 board4d[14] = 0
60

61 # add bitboard for en passant
62 if board.ep_square:
63 idx = np.unravel_index(board.ep_square, (8, 8))
64 board4d[15][idx[0]][idx[1]] = 1
65

66 # add bitboards for castling rights
67 if board.has_kingside_castling_rights(chess.WHITE):

Side 19 af 22



02461 - Project, Chess AI

68 board4d[16][7][7] = 1
69 if board.has_queenside_castling_rights(chess.WHITE):
70 board4d[17][7][0] = 1
71 if board.has_kingside_castling_rights(chess.BLACK):
72 board4d[18][0][7] = 1
73 if board.has_queenside_castling_rights(chess.BLACK):
74 board4d[19][0][0] = 1
75

76 # binary channel for repetition
77 repetitions = board.can_claim_fifty_moves()
78 if repetitions:
79 board4d[20][:][:] = 1
80

81 # binary channel for threefold repetition rule
82 repetitions = board.can_claim_draw()
83 if repetitions:
84 board4d[21][:][:] = 1
85

86 # add bitboard for mobility
87 for move in board.legal_moves:
88 i, j = square_to_index(move.from_square)
89 board4d[22][i][j] = 1
90

91 # add bitboard for mobility of player not on turn
92 aux = board.turn
93 board.turn = chess.WHITE if board.turn == chess.BLACK else chess.BLACK
94 for move in board.pseudo_legal_moves:
95 if board.is_legal(move):
96 i, j = square_to_index(move.from_square)
97 board4d[23][i][j] = 1
98 board.turn = aux
99

100 return board4d
101

102 class build_model(nn.Module):
103 def __init__(self, conv_size, conv_depth, dropout_rate):
104 super(build_model, self).__init__()
105 self.board4d = nn.Sequential(
106 nn.Conv2d(24, conv_size, kernel_size=3, padding=1),
107 nn.BatchNorm2d(conv_size),
108 nn.ReLU(),
109 nn.Dropout2d(p=dropout_rate)
110 )
111 for _ in range(conv_depth - 1):
112 self.board4d.add_module('conv{}'.format(_), nn.Conv2d(conv_size, conv_size, kernel_size=3, padding=1))
113 self.board4d.add_module('bn{}'.format(_), nn.BatchNorm2d(conv_size))
114 self.board4d.add_module('relu{}'.format(_), nn.ReLU())
115 self.board4d.add_module('dropout{}'.format(_), nn.Dropout2d(p=dropout_rate))
116

117 self.flatten = nn.Flatten()

Side 20 af 22



02461 - Project, Chess AI

118 self.dense1 = nn.Linear(conv_size * 8 * 8, 256)
119 self.dense2 = nn.Linear(256, 256)
120 self.dense3 = nn.Linear(256, 64)
121 self.value_head = nn.Linear(64, 1)
122

123 def forward(self, x):
124 x = self.board4d(x)
125 x = self.flatten(x)
126 x = self.dense1(x)
127 x = self.dense2(x)
128 x = self.dense3(x)
129 value = self.value_head(x)
130 return value
131

132

133 def minimax(board, depth, alpha, beta, maximizingPlayer, model):
134 if depth == 0 or board.is_game_over():
135 # use the trained model to predict the evaluation of the current position
136 input_data = split_dims(board)
137 input_data = torch.tensor(input_data, dtype=torch.float32)
138 input_data = input_data.unsqueeze(0)
139 with torch.no_grad():
140 evaluation = model(input_data).item()
141 return evaluation
142

143 if maximizingPlayer:
144 bestValue = 0.0
145 for move in board.legal_moves:
146 board.push(move)
147 value = minimax(board, depth - 1, alpha, beta, not maximizingPlayer, model)
148 board.pop()
149 bestValue = max(bestValue, value)
150 alpha = max(alpha, bestValue)
151 if beta <= alpha:
152 break
153 return bestValue
154 else:
155 bestValue = 1.0
156 for move in board.legal_moves:
157 board.push(move)
158 value = minimax(board, depth - 1, alpha, beta, True, model)
159 board.pop()
160 bestValue = min(bestValue, value)
161 beta = min(beta, bestValue)
162 if beta <= alpha:
163 break
164 return bestValue
165

166 def get_best_move(board, depth, model):
167 bestMove = chess.Move.null()

Side 21 af 22



02461 - Project, Chess AI

168 bestValue = float('-inf')
169 alpha = 0.0
170 beta = 1.0
171 for move in board.legal_moves:
172 board.push(move)
173 value = minimax(board, depth - 1, alpha, beta, False, model)
174 board.pop()
175 if value > bestValue:
176 bestValue = value
177 bestMove = move
178 alpha = max(alpha, value)
179 return bestMove
180

181

182 if __name__ == '__main__':
183 # create a chess board
184 board = chess.Board("r1bqkbnr/pp1p1ppp/2n1p3/2p5/2B1P3/5Q2/PPPP1PPP/RNB1K1NR w KQkq - 2 4")
185

186 # set the search depth
187 depth = 3
188

189 # load the trained model
190 model = build_model(128, 5, 0.20)
191 model.load_state_dict(torch.load("NAME.PT", map_location=torch.device('cpu')))
192 model.eval()
193

194 # get the best move
195 best_move = get_best_move(board, depth, model)
196 print(best_move)

Side 22 af 22


	Abstract
	Introduction
	Methods
	Results
	Discussion
	References
	Appendiks

